LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid Sn and Cu–Sn Alloy Substrates

Photo from wikipedia

The chemical vapor deposition (CVD) of graphene on liquid substrates produces high quality graphene films due to the defect-free and atomically flat surfaces of the liquids. Through the detailed study… Click to show full abstract

The chemical vapor deposition (CVD) of graphene on liquid substrates produces high quality graphene films due to the defect-free and atomically flat surfaces of the liquids. Through the detailed study of graphene growth on liquid Sn using atmospheric pressure CVD (APCVD), the quality of graphene has been found to have a close relationship with hydrogen flow rate that reflects on hydrogen partial pressure inside the reactor (PH2) and hydrogen solubility of the growth substrates. The role of PH2 was found to be crucial, with a low defect density monolayer graphene being obtained in low PH2 (90.4 mbar), while partial graphene coverage occurred at high PH2 (137.3 mbar). To further understand the role of substrate’s composition, binary alloy with compositions of 20, 30, 50, 60 and 80 wt.% tin in copper were made by arc-melting. Graphene quality was found to decrease with increasing the content of copper in the Cu–Sn alloys when grown using the conditions optimised for Sn substrates and this was related to the change in hydrogen solubility and the high catalytic activity of Cu compared to Sn. This shall provide a tool to help optimising CVD conditions for graphene growth based on the properties of the used catalytic substrate.

Keywords: graphene; vapor deposition; graphene liquid; pressure; atmospheric pressure

Journal Title: Nanomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.