LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microwave-Assisted Synthesis of Chalcopyrite/Silver Phosphate Composites with Enhanced Degradation of Rhodamine B under Photo-Fenton Process

Photo by picasso_the_line_art from unsplash

A new composite by coupling chalcopyrite (CuFeS2) with silver phosphate (Ag3PO4) (CuFeS2/Ag3PO4) was proposed by using a cyclic microwave heating method. The prepared composites were characterized by scanning and transmission… Click to show full abstract

A new composite by coupling chalcopyrite (CuFeS2) with silver phosphate (Ag3PO4) (CuFeS2/Ag3PO4) was proposed by using a cyclic microwave heating method. The prepared composites were characterized by scanning and transmission electron microscopy and X-ray diffraction, Fourier-transform infrared, UV–Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Under optimum conditions and 2.5 W irradiation (wavelength length > 420 nm, power density = 0.38 Wcm−2), 96% of rhodamine B (RhB) was degraded by CuFeS2/Ag3PO4 within a 1 min photo-Fenton reaction, better than the performance of Ag3PO4 (25% degradation within 10 min), CuFeS2 (87.7% degradation within 1 min), and mechanically mixed CuFeS2/Ag3PO4 catalyst. RhB degradation mainly depended on the amount of hydroxyl radicals generated from the Fenton reaction. The degradation mechanism of CuFeS2/Ag3PO4 from the photo-Fenton reaction was deduced using a free radical trapping experiment, the chemical reaction of coumarin, and photocurrent and luminescence response. The incorporation of CuFeS2 in Ag3PO4 enhanced the charge separation of Ag3PO4 and reduced Ag3PO4 photocorrosion as the photogenerated electrons on Ag3PO4 were transferred to regenerate Cu2+/Fe3+ ions produced from the Fenton reaction to Cu+/Fe2+ ions, thus simultaneously maintaining the CuFeS2 intact. This demonstrates the synergistic effect on material stability. However, hydroxyl radicals were produced by both the photogenerated holes of Ag3PO4 and the Fenton reaction of CuFeS2 as another synergistic effect in catalysis. Notably, the degradation performance and the reusability of CuFeS2/Ag3PO4 were promoted. The practical applications of this new material were demonstrated from the effective performance of CuFeS2/Ag3PO4 composites in degrading various dyestuffs (90–98.9% degradation within 10 min) and dyes in environmental water samples (tap water, river water, pond water, seawater, treated wastewater) through enhanced the Fenton reaction under sunlight irradiation.

Keywords: fenton reaction; degradation; cufes2 ag3po4; cufes2

Journal Title: Nanomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.