LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene

Photo by cadop from unsplash

We numerically investigate the multipolar plasmonic resonances of Aluminum nanoantenna tuned by a monolayer graphene from ultraviolet (UV) to visible regime. It is shown that the absorbance of the plasmonic… Click to show full abstract

We numerically investigate the multipolar plasmonic resonances of Aluminum nanoantenna tuned by a monolayer graphene from ultraviolet (UV) to visible regime. It is shown that the absorbance of the plasmonic odd modes (l = 1 and l = 3) of graphene–Al nanoribbon structure is enhanced while the absorption at the plasmonic even modes (l = 2) is suppressed, compared to the pure Al nanoribbon structure. With the presence of the monolayer graphene, a change in the resonance strength of the multipolar plasmonic modes results from the near field interactions of the monolayer graphene with the electric fields of the multipolar plasmonic resonances of the Al resonator. In particular, a clear absorption peak with a high quality (Q)-factor of 27 of the plasmonic third-order mode (l = 3) is realized in the graphene–Al nanoribbon structure. The sensitivity and figure of merit of the plasmonic third-order mode of the proposed Graphene–Al nanoribbon structure can reach 25 nm/RIU and 3, respectively, providing potential applications in optical refractive-index sensing.

Keywords: resonances aluminum; multipolar plasmonic; graphene; plasmonic resonances; nanoantenna tuned; aluminum nanoantenna

Journal Title: Nanomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.