LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational Study of Graphene–Polypyrrole Composite Electrical Conductivity

Photo from wikipedia

In this study, the electrical properties of graphene–polypyrrole (graphene-PPy) nanocomposites were thoroughly investigated. A numerical model, based on the Simmons and McCullough equations, in conjunction with the Monte Carlo simulation… Click to show full abstract

In this study, the electrical properties of graphene–polypyrrole (graphene-PPy) nanocomposites were thoroughly investigated. A numerical model, based on the Simmons and McCullough equations, in conjunction with the Monte Carlo simulation approach, was developed and used to analyze the effects of the thickness of the PPy, aspect ratio diameter of graphene nanorods, and graphene intrinsic conductivity on the transport of electrons in graphene–PPy–graphene regions. The tunneling resistance is a critical factor determining the transport of electrons in composite devices. The junction capacitance of the composite was predicted. A composite with a large insulation thickness led to a poor electrochemical electrode. The dependence of the electrical conductivity of the composite on the volume fraction of the filler was studied. The results of the developed model are consistent with the percolation theory and measurement results reported in literature. The formulations presented in this study can be used for optimization, prediction, and design of polymer composite electrical properties.

Keywords: graphene polypyrrole; study; conductivity; electrical conductivity; composite electrical

Journal Title: Nanomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.