LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SERS Amplification in Au/Si Asymmetric Dimer Array Coupled to Efficient Adsorption of Thiophenol Molecules

Photo by boliviainteligente from unsplash

Maximizing the surface-enhanced Raman scattering (SERS) is a significant effort focused on the substrate design. In this paper, we are reporting on an important enhancement in the SERS signal that… Click to show full abstract

Maximizing the surface-enhanced Raman scattering (SERS) is a significant effort focused on the substrate design. In this paper, we are reporting on an important enhancement in the SERS signal that has been reached with a hybrid asymmetric dimer array on gold film coupled to the efficient adsorption of thiophenol molecules on this array. Indeed, the key factor for the SERS effect is the adsorption efficiency of chemical molecules on the surface of plasmonic nanostructures, which is measured by the value of the adsorption constant usually named K. In addition, this approach can be applied to several SERS substrates allowing a prescriptive estimate of their relative performance as sensor and to probe the affinity of substrates for a target analyte. Moreover, this prescriptive estimate leads to higher predictability of SERS activity of molecules, which is also a key point for the development of sensors for a broad spectrum of analytes. We experimentally investigated the sensitivity of the Au/Si asymmetric dimer array on the gold film for SERS sensing of thiophenol molecules, which are well-known for their excellent adsorption on noble metals and serving as a proof-of-concept in our study. For this sensing, a detection limit of 10 pM was achieved as well as an adsorption constant K of 6 × 106 M−1. The enhancement factor of 5.2 × 1010 was found at the detection limit of 10 pM for thiophenol molecules.

Keywords: adsorption; asymmetric dimer; thiophenol molecules; dimer array

Journal Title: Nanomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.