Although sheet-like materials have good electrochemical properties, they still suffer from agglomeration problems during the electrocatalytic process. Integrating two-dimensional building blocks into a hollow cage-like structure is considered as an… Click to show full abstract
Although sheet-like materials have good electrochemical properties, they still suffer from agglomeration problems during the electrocatalytic process. Integrating two-dimensional building blocks into a hollow cage-like structure is considered as an effective way to prevent agglomeration. In this work, the hierarchical NiCo2O4 nanocages were successfully synthesized via coordinated etching and precipitation method combined with a post-annealing process. The nanocages are constructed through the interaction of two-dimensional NiCo2O4 nanosheets, forming a three-dimensional hollow hierarchical architecture. The three-dimensional supporting cavity effectively prevents the aggregation of NiCo2O4 nanosheets and the hollow porous feature provides amounts of channels for mass transport and electron transfer. As an electrocatalytic electrode for methanol, the NiCo2O4 nanocages-modified glassy carbon electrode exhibits a lower overpotential of 0.29 V than those of NiO nanocages (0.38 V) and Co3O4 nanocages (0.34 V) modified glassy carbon electrodes. The low overpotential is attributed to the prominent electrocatalytic dynamic issued from the three-dimensional hollow porous architecture and two-dimensional hierarchical feature of NiCo2O4 building blocks. Furthermore, the hollow porous structure provides sufficient interspace for accommodation of structural strain and volume change, leading to improved cycling stability. The NiCo2O4 nanocages-modified glassy carbon electrode still maintains 80% of its original value after 1000 consecutive cycles. The results demonstrate that the NiCo2O4 nanocages could have potential applications in the field of direct methanol fuel cells due to the synergy between two-dimensional hierarchical feature and three-dimensional hollow structure.
               
Click one of the above tabs to view related content.