LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative Estimation of Cell-Associated Silver Nanoparticles using the Normalized Side Scattering Intensities of Flow Cytometry

Photo by vita_belvita from unsplash

Quantification of cellular nanoparticles (NPs) is one of the most important steps in studying NP–cell interactions. Here, a simple method for the estimation of cell-associated silver (Ag) NPs in lung… Click to show full abstract

Quantification of cellular nanoparticles (NPs) is one of the most important steps in studying NP–cell interactions. Here, a simple method for the estimation of cell-associated silver (Ag) NPs in lung cancer cells (A549) is proposed based on their side scattering (SSC) intensities measured by flow cytometry (FCM). To estimate cellular Ag NPs associated with A549 cells over a broad range of experimental conditions, we measured the normalized SSC intensities (nSSC) of A549 cells treated with Ag NPs with five different core sizes (i.e., 40–200 nm, positively charged) under various exposure conditions that reflect different situations of agglomeration, diffusion, and sedimentation in cell culture media, such as upright and inverted configurations with different media heights. Then, we correlated these nSSC values with the numbers of cellular Ag NPs determined by inductively coupled plasma mass spectrometry (ICPMS) as a well-established cross-validation method. The different core sizes of Ag NPs and the various exposure conditions tested in this study confirmed that the FCM-SSC intensities are highly correlated with their core sizes as well as the amount of cellular Ag NPs over a linear range up to ~80,000 Ag NPs/cell and ~23 nSSC, which is significantly broader than those of previous studies.

Keywords: side scattering; associated silver; cell associated; flow cytometry; estimation cell; cell

Journal Title: Nanomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.