LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic Dynamic and Static Nature of π···π Interactions in Fused Benzene-Type Helicenes and Dimers, Elucidated with QTAIM Dual Functional Analysis

Photo by thejoltjoker from unsplash

The intrinsic dynamic and static nature of the π···π interactions between the phenyl groups in proximity of helicenes 3–12 are elucidated with the quantum theory of atoms-in-molecules dual functional analysis… Click to show full abstract

The intrinsic dynamic and static nature of the π···π interactions between the phenyl groups in proximity of helicenes 3–12 are elucidated with the quantum theory of atoms-in-molecules dual functional analysis (QTAIM-DFA). The π···π interactions appear in C-∗-C, H-∗-H, and C-∗-H, with the asterisks indicating the existence of bond critical points (BCPs) on the interactions. The interactions of 3–12 are all predicted to have a p-CS/vdW nature (vdW nature of the pure closed-shell interaction), except for 2Cbay-∗-7Cbay of 10, which has a p-CS/t-HBnc nature (typical-HBs with no covalency). (See the text for definition of the numbers of C and the bay and cape areas). The natures of the interactions are similarly elucidated between the components of helicene dimers 6:6 and 7:7 with QTAIM-DFA, which have a p-CS/vdW nature. The characteristic electronic structures of helicenes are clarified through the natures predicted with QTAIM-DFA. Some bond paths (BPs) in helicenes appeared or disappeared, depending on the calculation methods. The static nature of Ccape-∗-Ccape is very similar to that of Cbay-∗-Cbay in 9–12, whereas the dynamic nature of Ccape-∗-Ccape appears to be very different from that of Cbay-∗-Cbay. The results will be a guide to design the helicene-containing materials of high functionality.

Keywords: static nature; dual functional; nature interactions; nature; intrinsic dynamic; dynamic static

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.