LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Structural and Optical Properties of Electrodeposited Silicon Films on Graphite Substrates

Photo from wikipedia

Silicon (Si) films were deposited on low-cost graphite substrates by the electrochemical reduction of silicon dioxide nanoparticles (nano-SiO2) in calcium chloride (CaCl2), melted at 855 °C. Cyclic voltammetry (CV) was… Click to show full abstract

Silicon (Si) films were deposited on low-cost graphite substrates by the electrochemical reduction of silicon dioxide nanoparticles (nano-SiO2) in calcium chloride (CaCl2), melted at 855 °C. Cyclic voltammetry (CV) was used to analyze the electrochemical reduction mechanism of SiO2 to form Si deposits on the graphite substrate. X-ray diffraction (XRD) along with Raman and photoluminescence (PL) results show that the crystallinity of the electrodeposited Si-films was improved with an increase of the applied reduction potential during the electrochemical process. Scanning electron microscopy (SEM) reveals that the size, shape, and morphology of the Si-layers can be controlled from Si nanowires to the microcrystalline Si particles by controlling the reduction potentials. In addition, the morphology of the obtained Si-layers seems to be correlated with both the substrate materials and particle size of the feed materials. Thus, the difference in the electron transfer rate at substrate/nano-SiO2 interface due to different applied reduction potentials along with the dissolution rate of SiO2 particles during the electrochemical reduction process were found to be crucial in determining the microstructural properties of the Si-films.

Keywords: graphite substrates; study structural; electrochemical reduction; reduction; structural optical; silicon films

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.