LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Sensitive Fingerprint Detection under UV Light on Non-Porous Surface Using Starch-Powder Based Luminol-Doped Carbon Dots (N-CDs) from Tender Coconut Water as a Green Carbon Source

Photo by rocinante_11 from unsplash

This study aims to synthesize carbon dots from a natural resource and will be used to detect a latent fingerprint on a non-porous surface. The carbon dots (CDs) were prepared… Click to show full abstract

This study aims to synthesize carbon dots from a natural resource and will be used to detect a latent fingerprint on a non-porous surface. The carbon dots (CDs) were prepared by adding luminol to coconut water and ethanol via a hydrothermal method. Luminol enhances the chemiluminescence of the CDs, which show more distinct blue light under a UV lamp compared with bare CDs. To detect the latent fingerprint, luminol carbon dots (N-CDs) were combined with commercial starch and stirred at room temperature for 24 h. Their characteristics and optical properties were measured using EDX-SEM, HR-TEM, FTIR, XPS, UV–visible absorption, and fluorescence. In this research, it was found that the N-CDs had a d-spacing of 0.5 nm and a size of 12.9 nm. The N-CDs had a fluorescence intensity 551% higher than the standard normally used. N-CDs can be used to detect latent fingerprints on a non-porous surface and are easy to detect under a UV lamp at 395 nm. Therefore, luminol has a high potential to increase sensitive and stable traces of chemiluminescence from the green CDs for forensic latent fingerprint detection.

Keywords: non porous; dots cds; carbon; fingerprint; carbon dots; porous surface

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.