LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells

Photo from wikipedia

Extracellular matrix (ECM) as a structural and biochemical scaffold to surrounding cells plays significant roles in cell adhesion, migration, proliferation and differentiation. Herein, we show the novel combination of TEMPO-oxidized… Click to show full abstract

Extracellular matrix (ECM) as a structural and biochemical scaffold to surrounding cells plays significant roles in cell adhesion, migration, proliferation and differentiation. Herein, we show the novel combination of TEMPO-oxidized cellulose nanofiber (TOCNF) and surface-N-deacetylated chitin nanofiber (SDCtNF), respectively, having carboxylate and amine groups on each crystalline surface, for mouse fibroblast cell culture. The TOCNF/SDCtNF composite scaffolds demonstrated characteristic cellular behavior, strongly depending on the molar ratios of carboxylates and amines of polysaccharide NFs. Pure TOCNF substrate exhibited good cell attachment, although intact carboxylate-free CNF made no contribution to cell adhesion. By contrast, pure SDCtNF induced crucial cell aggregation to form spheroids; nevertheless, the combination of TOCNF and SDCtNF enhanced cell attachment and subsequent proliferation. Molecular blend of carboxymethylcellulose and acid-soluble chitosan made nearly no contribution to cell culture behavior. The wound healing assay revealed that the polysaccharide combination markedly promoted skin repair for wound healing. Both of TOCNF and SDCtNF possessed rigid nanofiber nanoarchitectures with native crystalline forms and regularly-repeated functional groups, of which such structural characteristics would provide a potential for developing cell culture scaffolds having ECM functions, possibly promoting good cellular adhesion, migration and growth in the designated cellular microenvironments.

Keywords: cell; proliferation; combination; adhesion migration; tocnf

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.