LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine

Photo from wikipedia

Metal nanoclusters (NCs) as a new type of fluorescent material have attracted great interest due to their good biocompatibilities and outstanding optical properties. However, most of the studies on metal… Click to show full abstract

Metal nanoclusters (NCs) as a new type of fluorescent material have attracted great interest due to their good biocompatibilities and outstanding optical properties. However, most of the studies on metal NCs focus on the synthesis, atomic or molecular assembly, whereas metal NCs ability to self-assemble to higher-level hierarchical nanomaterials through supramolecular interactions has rarely been reported. Herein, we investigate atomic precise silver NCs (Ag9-NCs, [Ag9(mba)9], where H2mba = 2-mercaptobenzoic acid) and peptide DD-5 were used to induce self-assembly, which can trigger an aggregation-induced luminescence (AIE) effect of Ag9-NCs through non-covalent forces (H-bond, π–π stacking) and argentophilic interactions [Ag(I)–Ag(I)]. The large Stokes shift (~140 nm) and the microsecond fluorescence lifetime (6.1 μs) indicate that Ag9-NCs/DD-5 hydrogel is phosphor. At the same time, the chirality of the peptide was successfully transferred to the achiral Ag9-NCs because of the supramolecular self-assembly, and the Ag9-NCs/DD-5 hydrogel also has good circularly polarized luminescence (CPL) properties. In addition, Ag9-NCs/DD-5 luminescent hydrogel is selective and sensitive to the detection of small biological molecule arginine. This work shows that DD-5 successfully induces the self-assembly of Ag9-NCs to obtain high luminescent gel, which maybe become a candidate material in the fields of sensors and biological sciences.

Keywords: self assembly; supramolecular self; precise silver; ag9 ncs

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.