Currently, there are several thermoelectric materials, such as Ag2Te, Bi2Te3, and Sb2Te3, that have been investigated for thermoelectric applications. However, the toxicity and rarity of most of these materials make… Click to show full abstract
Currently, there are several thermoelectric materials, such as Ag2Te, Bi2Te3, and Sb2Te3, that have been investigated for thermoelectric applications. However, the toxicity and rarity of most of these materials make them unsuitable for practical applications. In contrast, silver selenide (Ag2Se) is an abundant and environment-friendly thermoelectric material. This study provides a facile synthetic approach for preparing high-performance, low-cost, and flexible Ag2Se thermoelectric films. Ag2Se nanomaterials were prepared based on the chemical template method, and the reaction solution concentration was varied to systematically investigate the effects of reaction solution concentration on the characterization and thermoelectric properties of Ag2Se nanomaterials. For convenience of testing, the flexible Ag2Se films were prepared on porous nylon membranes using vacuum-assisted filtration. The prepared thermoelectric films were tested using an X-ray diffractometer, scanning electron microscope, Seebeck coefficient tester, and Hall tester. The film prepared from the solution with the lowest concentration (18.0 mM) demonstrated the best thermoelectric performance, with a maximum power factor of 382.18 μW∙m−1∙K−2 at ~400 K. Additionally, a cold-pressing treatment could effectively enhance the electrical conductivity of the film, without damaging the substrate, as the conductivity of the film remained at 90% of the original value after 1500 bending cycles.
               
Click one of the above tabs to view related content.