LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Electrochemical Performance of Ni-Rich LiNi0.88Co0.09Al0.03O2 Cathodes through Tungsten-Doping for Lithium-Ion Batteries

The tungsten-doped (0.5 and 1.0 mol%) LiNi0.88Co0.09Al0.03O2 (NCA) cathode materials are manufactured to systematically examine the stabilizing effect of W-doping. The 1.0 mol% W-doped LiNi0.88Co0.09Al0.03O2 (W1.0-NCA) cathodes deliver 173.5 mAh… Click to show full abstract

The tungsten-doped (0.5 and 1.0 mol%) LiNi0.88Co0.09Al0.03O2 (NCA) cathode materials are manufactured to systematically examine the stabilizing effect of W-doping. The 1.0 mol% W-doped LiNi0.88Co0.09Al0.03O2 (W1.0-NCA) cathodes deliver 173.5 mAh g−1 even after 100 cycles at 1 C, which is 95.2% of the initial capacity. While the capacity retention of NCA cathodes cycled in identical conditions is 86.3%. The optimal performances of the W1.0-NCA could be ascribed to the suppression of impendence increase and the decrease in anisotropic volume change, as well as preventing the collapse of structures during cycling. These findings demonstrate that the W-doping considerably enhances the electrochemical performance of NCA, which has potential applications in the development of Ni-rich layered cathode materials that can display high capacity with superior cycling stability.

Keywords: electrochemical performance; enhancing electrochemical; 88co0 09al0; lini0 88co0; 09al0 03o2

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.