LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4 Nanomaterials under 785 and 975 nm Excitation

Photo from wikipedia

Materials that generate pure, single-color emission are desirable in the development and manufacturing of modern optoelectronic devices. This work shows the possibility of generating pure, green up-conversion luminescence upon the… Click to show full abstract

Materials that generate pure, single-color emission are desirable in the development and manufacturing of modern optoelectronic devices. This work shows the possibility of generating pure, green up-conversion luminescence upon the excitation of Er3+-doped nanomaterials with a 785 nm NIR laser. The up-converting inorganic nanoluminophores YVO4: Er3+ and YVO4: Yb3+ and Er3+ were obtained using a hydrothermal method and subsequent calcination. The synthesized vanadate nanomaterials had a tetragonal structure and crystallized in the form of nearly spherical nanoparticles. Up-conversion emission spectra of the nanomaterials were measured using laser light sources with λex = 785 and 975 nm. Importantly, under the influence of the mentioned laser irradiation, the as-prepared samples exhibited bright green up-conversion luminescence that was visible to the naked eye. Depending on the dopant ions used and the selected excitation wavelengths, two (green) or three (green and red) bands originating from erbium ions appeared in the emission spectra. In this way, by changing the UC mechanisms, pure green luminescence of the material can be obtained. The proposed strategy, in combination with various single-doped UC nanomaterials activated with Er3+, might be beneficial for modern optoelectronics, such as light-emitting diodes with a rich color gamut for back-light display applications.

Keywords: er3; pure green; luminescence; er3 doped; green conversion

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.