LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring Exciton Fine-Structure in Randomly Oriented Perovskite Nanocrystal Ensembles Using Nonlinear Optical Spectroscopy: Theory

Photo from wikipedia

Lead halide perovskite nanocrystals (PNCs) exhibit unique optoelectronic properties, many of which originate from a purported bright-triplet exciton fine-structure. A major impediment to measuring this fine-structure is inhomogeneous spectral broadening,… Click to show full abstract

Lead halide perovskite nanocrystals (PNCs) exhibit unique optoelectronic properties, many of which originate from a purported bright-triplet exciton fine-structure. A major impediment to measuring this fine-structure is inhomogeneous spectral broadening, which has limited most experimental studies to single-nanocrystal spectroscopies. It is shown here that the linearly polarized single-particle selection rules in PNCs are preserved in nonlinear spectroscopies of randomly oriented ensembles. Simulations incorporating rotational averaging demonstrate that techniques such as transient absorption and two-dimensional coherent spectroscopy are capable of resolving exciton fine-structure in PNCs, even in the presence of inhomogeneous broadening and orientation disorder.

Keywords: randomly oriented; exciton fine; spectroscopy; fine structure; measuring exciton

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.