LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A First-Principle Study of Interactions between Magnesium and Metal-Atom-Doped Graphene

Photo from wikipedia

In this study, the interactions of magnesium (Mg) atom and Mg(001) surface with different metal-atom-doped graphene were investigated using a density functional theory (DFT) method. For the interactions of magnesium… Click to show full abstract

In this study, the interactions of magnesium (Mg) atom and Mg(001) surface with different metal-atom-doped graphene were investigated using a density functional theory (DFT) method. For the interactions of magnesium with Al-, Mn-, Zn-, and Zr-doped and intrinsic graphene, it was found that the magnesium atoms were physisorbed into the hollow sites of the intrinsic graphene with only the smallest interaction energy (approximately −1.900 eV). However, the magnesium atoms tended to be chemisorbed on the doped graphene, which exhibited larger interaction energies and charge transfers. Additionally, the Zn-doped graphene displayed the largest interaction energy with the Mg atom (approximately −3.833 eV). For the interactions of Mg(001) with Al-, Mn-, Zn-, and Zr-doped and intrinsic graphene (intrinsic and doped graphene/Mg interface), doped atoms interacted with a Mg layer to make graphene wrinkle, resulting in a higher specific surface area and better stability. Mg–C chemical bonds were formed at the Al-, Zn-, and Zr-doped interface, and Mg–Mn chemical bonds were formed at the Mn-doped interface. This study provided the fundamental research for future research into doped atoms on graphene reinforced magnesium matrix composites.

Keywords: graphene; study interactions; atom; doped graphene; interactions magnesium

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.