LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Foam Synthesis of Nickel/Nickel (II) Hydroxide Nanoflakes Using Double Templates of Surfactant Liquid Crystal and Hydrogen Bubbles: A High-Performance Catalyst for Methanol Electrooxidation in Alkaline Solution

Photo from wikipedia

This work demonstrates the chemical synthesis of two-dimensional nanoflakes of mesoporous nickel/nickel (II) hydroxide (Ni/Ni(OH)2-NFs) using double templates of surfactant self-assembled thin-film and foam of hydrogen bubbles produced by sodium… Click to show full abstract

This work demonstrates the chemical synthesis of two-dimensional nanoflakes of mesoporous nickel/nickel (II) hydroxide (Ni/Ni(OH)2-NFs) using double templates of surfactant self-assembled thin-film and foam of hydrogen bubbles produced by sodium borohydride reducing agent. Physicochemical characterizations show the formation of amorphous mesoporous 2D nanoflakes with a Ni/Ni(OH)2 structure and a high specific surface area (165 m2/g). Electrochemical studies show that the electrocatalytic activity of Ni/Ni(OH)2 nanoflakes towards methanol oxidation in alkaline solution is significantly enhanced in comparison with that of parent bare-Ni(OH)2 deposited from surfactant-free solution. Cyclic voltammetry shows that the methanol oxidation mass activity of Ni/Ni(OH)2-NFs reaches 545 A/cm2 gcat at 0.6 V vs. Ag/AgCl, which is more than five times higher than that of bare-Ni(OH)2. Moreover, Ni/Ni(OH)2-NFs reveal less charge transfer resistance (10.4 Ω), stable oxidation current density (625 A/cm2 gcat at 0.7 V vs. Ag/AgCl), and resistance to the adsorption of reaction intermediates and products during three hours of constant-potential methanol oxidation electrolysis in alkaline solution. The high-performance electrocatalytic activity of Ni/Ni(OH)2 nanoflakes is mainly derived from efficient charge transfer due to the high specific surface area of the 2D mesoporous architecture of the nanoflakes, as well as the mass transport of methanol to Ni2+/Ni3+ active sites throughout the catalyst layer.

Keywords: methanol; alkaline solution; solution; nickel nickel; nickel hydroxide; nickel

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.