LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Theoretical Study of Kink Deformation in Graphite Based on Differential Geometric Method

Photo from wikipedia

Kink deformation is often observed in materials with laminated layers. Graphite composed of stacked graphene layers has the unique laminated structure of carbon nanomaterials. In this study, we performed the… Click to show full abstract

Kink deformation is often observed in materials with laminated layers. Graphite composed of stacked graphene layers has the unique laminated structure of carbon nanomaterials. In this study, we performed the interlayer deformation of graphite under compression using a simulation of molecular dynamics and proposed a differential geometrical method to evaluate the kink deformation. We employed “mean curvature” for the representativeness of the geometrical properties to explore the mechanism of kink deformation and the mechanical behaviors of graphite in nanoscale. The effect of the number of graphene layers and the lattice chirality of each graphene layer on kink deformation and stress–strain diagrams of compressed graphite are discussed in detail. The results showed that kink deformation occurred in compressed graphite when the strain was approximately equal to 0.02, and the potential energy of the compressed graphite proportionately increased with the increasing compressive strain. The proposed differential geometric method can not only be applied to kink deformation in nanoscale graphite, but could also be extended to solving and predicting interlayer deformation that occurs in micro- and macro-scale material structures with laminated layers.

Keywords: deformation; deformation graphite; kink deformation; geometric method; differential geometric

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.