LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rubrene-Directed Structural Transformation of Fullerene (C60) Microsheets to Nanorod Arrays with Enhanced Photoelectrochemical Properties

Photo by nnonno from unsplash

One-dimensional (1D) nanostructures possess huge potential in electronics and optoelectronics, but the axial alignment of such 1D structures is still a challenging task. Herein, we report a simple method that… Click to show full abstract

One-dimensional (1D) nanostructures possess huge potential in electronics and optoelectronics, but the axial alignment of such 1D structures is still a challenging task. Herein, we report a simple method that enables two-dimensional (2D) C60 microsheets to evolve into highly ordered nanorod arrays using rubrene as a structure-directing agent. The structural transformation is accomplished by adding droplets of rubrene-m-xylene solution onto C60 microsheets and allowing the m-xylene solvent to evaporate naturally. In sharp contrast, when rubrene is absent from m-xylene, randomly oriented C60 nanorods are produced. Spectroscopic and microscopic characterizations collectively indicate a rather plausible transformation mechanism that the close lattice match allows the epitaxial growth of rubrene on C60 microsheets, followed by the reassembly of dissolved C60 along the aligned rubrene due to the intermolecular charge-transfer (CT) interactions, leading to the formation of ordered nanorod arrays. Due to the aligned structures and the CT interactions between rubrene and C60, the photocurrent density of the nanorod arrays is improved by 31.2% in the UV region relative to the randomly oriented counterpart. This work presents a facile and effective strategy for the construction of ordered fullerene nanorod arrays, providing new ideas for the alignment of fullerene and other relevant organic microstructures.

Keywords: fullerene; nanorod arrays; c60 microsheets; structural transformation; rubrene

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.