LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface

Photo from wikipedia

The heat transfer ratio has an important role in industry and the engineering sector; the heat transfer ratios of CNT nanofluids are high compared to other nanofluids. This paper examines… Click to show full abstract

The heat transfer ratio has an important role in industry and the engineering sector; the heat transfer ratios of CNT nanofluids are high compared to other nanofluids. This paper examines the analytical investigation of the time-dependent stagnation point flow of a CNT nanofluid over a stretching surface. For the investigation of the various physical restrictions, single and multi-walled carbon nanotubes (SWCNTs, MWCNTs) were used and compared. The defined similarity transformation was used, to reduce the given nonlinear partial differential equations (PDEs) to nonlinear ordinary differential equations (ODEs). The model nonlinear ordinary differential equations were solved, with an approximate analytical (OHAM) optimal homotopy asymptotic method being used for the model problem. The impact of different parameters such as magnetic field parameter, unsteady parameter, dimensionless nanoparticles volume friction, Prandtl number, and Eckert number are interpreted using graphs, in the form of the velocity and temperature profile.

Keywords: investigation; investigation time; analytical investigation; stagnation point; dependent stagnation; time dependent

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.