LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctionalized Mesostructured Silica Nanoparticles Containing Mn2 Complex for Improved Catalase-Mimicking Activity in Water

Photo from wikipedia

We report the synthesis of a hybrid nanocatalyst obtained through the immobilization of bio-inspired [{Mn(bpy)(H2O)}(µ-2-MeC6H4COO)2(µ-O){Mn(bpy)(NO3)}]NO3 compound into functionalized, monodispersed, mesoporous silica nanoparticles. The in situ dual functionalization sol–gel strategy adopted… Click to show full abstract

We report the synthesis of a hybrid nanocatalyst obtained through the immobilization of bio-inspired [{Mn(bpy)(H2O)}(µ-2-MeC6H4COO)2(µ-O){Mn(bpy)(NO3)}]NO3 compound into functionalized, monodispersed, mesoporous silica nanoparticles. The in situ dual functionalization sol–gel strategy adopted here leads to the synthesis of raspberry-shaped silica nanoparticles of ca. 72 nm with a large open porosity with preferential localization of 1,4-pyridine within the pores and sulfobetaine zwitterion on the nanoparticles’ periphery. These nano-objects exhibit improved catalase-mimicking activity in water thanks to the encapsulation/immobilization of the catalytic active complex and high colloidal stability in water, as demonstrated through the dismutation reaction of hydrogen peroxide.

Keywords: silica nanoparticles; water; activity water; mimicking activity; catalase mimicking; improved catalase

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.