LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight and Flexible Graphene Foam Composite with Improved Damping Properties

Photo by briangarrityphoto from unsplash

As an elastomer, PDMS can effectively suppress vibration in various fields in a certain temperature range by its viscoelastic behavior in the vitrification transition region, but the vibration isolation effect… Click to show full abstract

As an elastomer, PDMS can effectively suppress vibration in various fields in a certain temperature range by its viscoelastic behavior in the vitrification transition region, but the vibration isolation effect is poor at high temperature. In this paper, a three-dimensional graphene oxide (GO) foam is fabricated by solution processing method and freeze-drying techniques. After sequential infiltration synthesis, a GO-foam-reinforced PDMS nanocomposite (GO/PDMS) is fabricated with improved damping ability. By adjusting the content of GO, the micros-tructure of GO foam can be sensitively changed, which is crucial to the damping properties of composites. In this paper, by the dynamic mechanical analysis (DMA) of pure PDMS and five kinds of GO/PDMS composites, it is proved that the GO/PDMS composites developed in this work have reliable elasticity and viscoelasticity at 25 °C, which is 100 °C higher than the applicable temperature of pure PDMS. The storage modulus can reach 3.58 MPa, and the loss modulus can reach 0.45 MPa, which are 1.87 times and 2.0 times of pure PDMS, respectively. This GO-based nanocomposite is an ideal candidate for damping materials in passive vibration isolation devices.

Keywords: graphene; damping properties; improved damping; pdms; foam

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.