LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential of Fluoride-Containing Zinc Oxide and Copper Oxide Nanocomposites on Dentin Bonding Ability

Photo from wikipedia

Despite recent advances in bonding restorations, which are the basis of restorative dentistry, secondary caries are still able to form. Previously, a novel fluoride-containing zinc and copper (ZCF) nanocomposite was… Click to show full abstract

Despite recent advances in bonding restorations, which are the basis of restorative dentistry, secondary caries are still able to form. Previously, a novel fluoride-containing zinc and copper (ZCF) nanocomposite was introduced to prevent the formation of caries due to its antibacterial activity. In this study, we studied the impact of ZCF nanoparticles on the adhesive strength of bonding restorations through micro-tensile bond strength (µTBS) testing. The impact of antibacterial and matrix metalloproteinase (MMP) inhibitors on the nanoparticles was also examined. The nanocomposites were prepared using a simple one-step homogeneous co-precipitation method at a low temperature. A self-etch adhesive was applied to 10 extracted caries-free human molars with (test group) and without (control group) the ZCF nanoparticles. This was followed by composite resin build-up and µTBS testing, MMP activity assays, and evaluation of the antibacterial effects. The results showed no significant differences in the µTBS between the ZCF and the control groups. However, the ZCF exhibited a significant inhibitory effect against MMP-2, MMP-8, and MMP-9, in addition to an antibacterial effect on Streptococcus mutans. Therefore, the present study demonstrated that the addition of ZCF nanoparticles to adhesive systems can result in MMP inhibition and antibacterial action while maintaining the mechanical properties of the bonding restorations.

Keywords: containing zinc; mmp; copper; fluoride containing

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.