LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Temporal Response of MoS2 Photodetectors by Mild Oxygen Plasma Treatment

Photo from wikipedia

Temporal response is an important factor limiting the performance of two-dimensional (2D) material photodetectors. The deep trap states caused by intrinsic defects are the main factor to prolong the response… Click to show full abstract

Temporal response is an important factor limiting the performance of two-dimensional (2D) material photodetectors. The deep trap states caused by intrinsic defects are the main factor to prolong the response time. In this work, it is demonstrated that the trap states in 2D molybdenum disulfide (MoS2) can be efficiently modulated by defect engineering through mild oxygen plasma treatment. The response time of the few-layer MoS2 photodetector is accelerated by 2–3 orders of magnitude, which is mainly attributed to the deep trap states that can be easily filled when O2 or oxygen ions are chemically bonded with MoS2 at sulfur vacancies (SV) sites. We characterized the defect engineering of plasma-exposed MoS2 by Raman, PL and electric properties. Under the optimal processing conditions of 30 W, 50 Pa and 30 s, we found 30-fold enhancements in photoluminescence (PL) intensity and a nearly 2-fold enhancement in carrier field-effect mobility, while the rise and fall response times reached 110 ms and 55 ms, respectively, at the illumination wavelength of 532 nm. This work would, therefore, offer a practical route to improve the performance of 2D dichalcogenide-based devices for future consideration in optoelectronics research.

Keywords: mild oxygen; oxygen plasma; mos2; response; temporal response

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.