LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size

Photo by javaistan from unsplash

Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic… Click to show full abstract

Understanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.2 to 99.3%. The highest relative retention of PAM@MNP was observed for the lowest Co. Smaller Co also resulted in higher relative retention (39.8%) when IS increased to 10 mM. However, relative retention became much less sensitive to solution IS as Co increased. The high mobility is attributed to the PAM coating provoking steric stability of PAM@MNP against homoaggregation. PAM@MNP retention was about 10-fold higher for smaller grain sizes, i.e., 240 µm and 350 µm versus 607 µm. The simulated maximum retained concentration on the solid phase (Smax) and retention rate coefficient (k1) increased with decreasing Co and grain sizes, reflecting higher retention rates at these parameters. The study revealed under various IS for the first time the high mobility premise of polymer-coated magnetite nanoparticles at realistic (<10 mg L−1) environmental concentrations, thereby highlighting an untapped potential for novel environmental PAM@MNP application usage.

Keywords: retention; pam mnp; coated magnetite; acid; magnetite nanoparticles; grain

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.