LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Morphology and Porosity Regulation of Zeolite ZSM-5 Mesocrystals with Synergistically Enhanced Catalytic Activity and Shape Selectivity

The morphology and mesoporosity of zeolite are two vital properties to determine its performance in diverse applications involving adsorption and catalysis; while it remains a big challenge for the synthesis… Click to show full abstract

The morphology and mesoporosity of zeolite are two vital properties to determine its performance in diverse applications involving adsorption and catalysis; while it remains a big challenge for the synthesis and regulation of zeolites with exceptional morphology/porosity only through inorganic-ions-based modification. Herein, by simply optimizing the alkali metal type (K+ or Na+), as well as alkali/water ratio and crystallization temperature, the zeolite ZSM-5 mesocrystals with diverse mesostructures are simply and controllably prepared via fine-tuning the crystallization mechanism in an organotemplate-free, ions-mediated seed-assisted system. Moreover, the impacts of these key parameters on the evolution of seed crystals, the development and assembly behavior of aluminosilicate species and the solution-phase process during zeolite crystallization are investigated by means of directional etching in NH4F or NaOH solutions. Except for the morphology/mesoporosity modulation, their physical and chemical properties, such as particle size, microporosity, Si/Al ratio and acidity, can be well maintained at a similar level. As such, the p/o-xylene adsorption and catalytic performance of o-xylene isomerization are used to exhaustively evaluate the synergistically enhanced catalytic activity and shape selectivity of the obtained products. This work demonstrates the possibility of effectively constructing novel zeolite mesostructures by simply altering parameters on simple ions-controlled crystallization and provides good models to inspect the impacts of mesoporosity or morphology on their catalytic performances.

Keywords: zeolite zsm; zsm mesocrystals; morphology; morphology porosity; seed

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.