LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrogen- and Halogen-Free Multifunctional Polymer-Directed Fabrication of Aluminum-Rich Hierarchical MFI Zeolites

Photo from wikipedia

Aluminum-rich hierarchical MFI-type zeolites with high acidic-site density exhibit excellent activity and selectivity in bulky molecule-involved reactions. However, it is challenging to develop a facile and environmentally benign method for… Click to show full abstract

Aluminum-rich hierarchical MFI-type zeolites with high acidic-site density exhibit excellent activity and selectivity in bulky molecule-involved reactions. However, it is challenging to develop a facile and environmentally benign method for fabricating them. Herein, we employ a polymer that does not contain nitrogen and halogen elements to successfully synthesize aluminum-rich hierarchical ZSM-5 zeolite with a Si/Al ratio of 8 and a significant number of mesopores comprised of oriented-assembled nanocrystals. It is demonstrated that the nitrogen- and halogen-free polymer is instrumental in the formation of the ZSM-5 zeolite by serving as a template for constructing the hierarchical micro/mesoporous structure. Moreover, this polymer also acts as a crystal growth modifier to form a single-crystalline zeolite. Notably, the resultant zeolite shows a better catalytic performance in converting waste plastic into hydrocarbons than a commercial one. Our work enables the synthesis of high-quality hierarchical zeolites without requiring quaternary ammonium templates.

Keywords: polymer; aluminum rich; rich hierarchical; nitrogen halogen

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.