Optically controlled supercapacitors (S-C) could be of interest to the sensor community, as well as set the stage for novel optoelectronic charging devices. Here, structures constructed of two parallel transparent… Click to show full abstract
Optically controlled supercapacitors (S-C) could be of interest to the sensor community, as well as set the stage for novel optoelectronic charging devices. Here, structures constructed of two parallel transparent current collectors (indium-tin-oxide, ITO films on glass substrates) were considered. Active-carbon (A-C) films were used as electrodes. Two sets of electrodes were used: as-is electrodes that were used as the reference and electrodes that were embedded with submicron- or micron-sized titanium oxide (TiO2) colloids. While immersed in a 1 M Na2SO4, the electrodes exhibited minimal thermal effects (<3 °C) throughout the course of experiments). The optically induced capacitance increase for TiO2-embedded S-C was large of the order of 30%, whereas S-C without the TiO2 colloids exhibited minimal optically related effects (<3%). Spectrally, the blue spectral band had a relatively larger impact on the light-induced effects. A lingering polarization effect that increased the cell capacitance in the dark after prolonged light exposure is noted; that effect occurred without an indication of a chemical reaction.
               
Click one of the above tabs to view related content.