LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Heater Structures for Thermal Conductivity Measurements of SiO2 and Al2O3 Thin Films Using the 3-Omega Method

Photo by introspectivedsgn from unsplash

A well-known method for measuring thermal conductivity is the 3-Omega (3ω) method. A prerequisite for it is the deposition of a metal heater on top of the sample surface. The… Click to show full abstract

A well-known method for measuring thermal conductivity is the 3-Omega (3ω) method. A prerequisite for it is the deposition of a metal heater on top of the sample surface. The known design rules for the heater geometry, however, are not yet sufficient. In this work, heaters with different lengths and widths within the known restrictions were investigated. The measurements were carried out on SiO2 thin films with different film thicknesses as a reference. There was a significant difference between theoretical deposited heater width and real heater width, which could lead to errors of up to 50% for the determined thermal conductivity. Heaters with lengths between 11 and 13 mm and widths of 6.5 µm or more proved to deliver the most trustworthy results. To verify the performance of these newfound heaters, additional investigations on Al2O3 thin films were carried out, proving our conclusions to be correct and delivering thermal conductivity values of 0.81 Wm−1 K−1 and 0.93 Wm−1 K−1 for unannealed and annealed samples, respectively. Furthermore, the effect of annealing on Al2O3 was studied, revealing a significant shrinking in film thickness of approximately 11% and an increase in thermal conductivity of 15%. The presented results on well-defined geometries will help to produce optimized heater structures for the 3ω method.

Keywords: heater; thin films; conductivity; omega method; thermal conductivity

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.