Pulsed laser deposition of nanostructured molybdenum sulfide films creates specific nonequilibrium growth conditions, which improve the electrocatalytic properties of the films in a hydrogen evolution reaction (HER). The enhanced catalytic… Click to show full abstract
Pulsed laser deposition of nanostructured molybdenum sulfide films creates specific nonequilibrium growth conditions, which improve the electrocatalytic properties of the films in a hydrogen evolution reaction (HER). The enhanced catalytic performance of the amorphous a-MoSx (2 ≤ x ≤ 3) matrix is due to the synergistic effect of the Mo nanoparticles (Mo-NP) formed during the laser ablation of a MoS2 target. This work looks at the possibility of employing a-MoSx/NP-Mo films (4 and 20 nm thickness) to produce hydrogen by photo-stimulated HER using a p-Si cathode. A simple technique of pulsed laser p-Si doping with phosphorus was used to form an n+p-junction. Investigations of the energy band arrangement at the interface between a-MoSx/NP-Mo and n+-Si showed that the photo-HER on an a-MoSx/NP-Mo//n+p-Si photocathode with a 20 nm thick catalytic film proceeded according to a Z-scheme. The thickness of interfacial SiOy(P) nanolayer varied little in photo-HER without interfering with the effective electric current across the interface. The a-MoSx/NP-Mo//n+p-Si photocathode showed good long-term durability; its onset potential was 390 mV and photocurrent density was at 0 V was 28.7 mA/cm2. The a-MoSx/NP-Mo//n+p-Si photocathodes and their laser-based production technique offer a promising pathway toward sustainable solar hydrogen production.
               
Click one of the above tabs to view related content.