LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology Adjustment and Optimization of CuS as Enzyme Mimics for the High Efficient Colorimetric Determination of Cr(VI) in Water

Photo by a2eorigins from unsplash

Metal sulfide is often utilized as a catalyzed material to form colorimetric response system for some heavy metal detection. While the aggregation effect and conventional morphology limited the catalyzed efficiency.… Click to show full abstract

Metal sulfide is often utilized as a catalyzed material to form colorimetric response system for some heavy metal detection. While the aggregation effect and conventional morphology limited the catalyzed efficiency. Herein, a robust method based on morphology adjustment was proposed to improve the dispersibility and catalytic performance of CuS. The results demonstrated when the solvent ratio of ethylene glycol and dimethyl sulfoxide arrived at 3:1, it displayed an optimal structure which is like a patulous flower. Meanwhile, an optimal surface binding energy (ΔE) of 120.1 kcal/mol was obtained via theoretical calculation model. The flower-like structure caused a 2-fold increase in the catalytic level. Subsequently, the CuS was employed to make colorimetric detection of Cr(VI) in water. The assay results exhibited a linear range of the Cr(VI) from 60 to 340 nM, the limit of detection was 1.07 nM. In the practical tests for Qianhu lake water, the spiked recoveries were 93.6% and 104% with the RSD of 4.71% and 3.08%. Therefore, this CuS-based colorimetric method possesses a satisfactory application prospect for the Cr(VI) determination in water.

Keywords: cus; morphology adjustment; water; determination water

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.