LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

All-Printed Flexible Memristor with Metal–Non-Metal-Doped TiO2 Nanoparticle Thin Films

Photo from wikipedia

A memristor is a fundamental electronic device that operates like a biological synapse and is considered as the solution of classical von Neumann computers. Here, a fully printed and flexible… Click to show full abstract

A memristor is a fundamental electronic device that operates like a biological synapse and is considered as the solution of classical von Neumann computers. Here, a fully printed and flexible memristor is fabricated by depositing a thin film of metal–non-metal (chromium-nitrogen)-doped titanium dioxide (TiO2). The resulting device exhibited enhanced performance with self-rectifying and forming free bipolar switching behavior. Doping was performed to bring stability in the performance of the memristor by controlling the defects and impurity levels. The forming free memristor exhibited characteristic behavior of bipolar resistive switching with a high on/off ratio (2.5 × 103), high endurance (500 cycles), long retention time (5 × 103 s) and low operating voltage (±1 V). Doping the thin film of TiO2 with metal–non-metal had a significant effect on the switching properties and conduction mechanism as it directly affected the energy bandgap by lowering it from 3.2 eV to 2.76 eV. Doping enhanced the mobility of charge carriers and eased the process of filament formation by suppressing its randomness between electrodes under the applied electric field. Furthermore, metal–non-metal-doped TiO2 thin film exhibited less switching current and improved non-linearity by controlling the surface defects.

Keywords: printed flexible; metal non; flexible memristor; non metal; memristor; metal

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.