LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silver Nanoparticles Densely Grafted with Nitroxides as a Recyclable Green Catalyst in the Selective Oxidation of Alcohols

Photo by unstable_affliction from unsplash

The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been… Click to show full abstract

The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An ideal green oxidation process should employ a highly active, selective and recyclable catalyst that can work with oxygen under mild conditions. This paper presents a successful application of densely grafted silver nanostructures with stable nitroxide radicals (N-AgNPs) as an effective, easily-recovered and regenerable catalyst for the selective oxidation of alcohols. The fabricated ultra-small and narrow dispersive silver nanoparticles have been fully characterised using physicochemical methods (TEM, DLS, XPS, TGA). N-AgNPs have been successfully applied to oxidise several model alcohols: benzyl alcohol, 4-pyridinemethanol, furfuryl alcohol, 1-phenyl ethanol, n-heptanol and allyl alcohol under mild conditions using oxygen as a stoichiometric oxidant. Notably, the fabricated nitroxide grafted silver nanoparticles (N-AgNPs) were reused more than ten times in the oxidation of a series of primary alcohols to corresponding aldehydes under mild conditions with very high yields and a selectivity close to 100%.

Keywords: oxidation; oxidation alcohols; catalyst; densely grafted; selective oxidation; silver nanoparticles

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.