The mineralization of five industrial sunlight-exposed wastewater samples was investigated, and the recycling process of ZnO quantum dots (ZQDs) for five reusable times was estimated under the approved Egyptian Environmental… Click to show full abstract
The mineralization of five industrial sunlight-exposed wastewater samples was investigated, and the recycling process of ZnO quantum dots (ZQDs) for five reusable times was estimated under the approved Egyptian Environmental Law COD (Chemical Oxygen Demand), which has to be less than 1000 ppm. An improved sol-gel process at a low calcination temperature that ranged between 350 and 450 °C was employed to synthesize ZnO quantum dots (ZQDs). The purity, high crystallinity, and structure of the prepared catalysts were determined by TEM and XRD analysis. The energy bandgap, the crystal size values, and the surface area for Z1 and Z2 were determined based on the TEMs, DRSs, and EBTs, which were equal to 6.9 nm, 3.49 eV, and 160.95 m2/g for Z1 and 8.3 nm, 3.44 eV, and 122.15 m2/g for Z2. The investigation of the prepared samples was carried out by studying the photocatalytic activity and photoluminescence, and it was found that the degradation rate of reactive yellow dye as an industrial pollutant of the Z1 sample was significantly higher than other samples, by 20%. The data collection has shown that photocatalytic efficiency decreases with an increase in the crystallite size of ZQDs.
               
Click one of the above tabs to view related content.