LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Room Temperature Ammonia Gas Sensing Properties of Fe-Doped MoO3 Thin Films Fabricated Using Nebulizer Spray Pyrolysis

Photo from wikipedia

MoO3 thin films are fabricated using nebulizer spray pyrolysis technique, which is doped with Fe at various concentrations of 1, 2, 3, and 4% for ammonia gas sensors application at… Click to show full abstract

MoO3 thin films are fabricated using nebulizer spray pyrolysis technique, which is doped with Fe at various concentrations of 1, 2, 3, and 4% for ammonia gas sensors application at room temperature. X-ray diffraction (XRD) study confirms the growth of the crystal by Fe doping up to 3%, nano rods shape morphology of the thin film samples observed by field emission scanning electron microscope (FESEM), reduction in bandgap is evidenced via UV-VIS spectrophotometer. Gas sensing study is performed using gas analyzing chamber attached with Keithley source meter. Since 3% Fe doped MoO3 sample displayed nano rods over the film surface which exhibits highest sensitivity of 38,500%, in a short period of raise and decay time 54 and 6 s. Our findings confirms that the 3% Fe doped MoO3 films suitability for ammonia gas sensing application.

Keywords: gas sensing; gas; moo3 thin; doped moo3; ammonia gas

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.