LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Self-Assembly Strategy towards Fabricating Mesoporous Nitrogen-Rich Carbon for Efficient Electro-Fenton Degradation of Persistent Organic Pollutants

Photo from wikipedia

The electro-Fenton (EF) process is regarded as an efficient and promising sewage disposal technique for sustainable water environment protection. However, current developments in EF are largely restricted by cathode electrocatalysts.… Click to show full abstract

The electro-Fenton (EF) process is regarded as an efficient and promising sewage disposal technique for sustainable water environment protection. However, current developments in EF are largely restricted by cathode electrocatalysts. Herein, a supramolecular self-assembly strategy is adopted for synthetization, based on melamine–cyanuric acid (MCA) supramolecular aggregates integrated with carbon fixation using 5-aminosalicylic acid and zinc acetylacetonate hydrate. The prepared carbon materials characterize an ordered lamellar microstructure, high specific surface area (595 m2 g−1), broad mesoporous distribution (4~33 nm) and high N doping (19.62%). Such features result from the intrinsic superiority of hydrogen-bonded MCA supramolecular aggregates via the specific molecular assembly process. Accordingly, noteworthy activity and selectivity of H2O2 production (~190.0 mg L−1 with 2 h) are achieved. Excellent mineralization is declared for optimized carbon material in several organic pollutants, namely, basic fuchsin, chloramphenicol, phenol and several mixed triphenylmethane-type dyestuffs, with total organic carbon removal of 87.5%, 74.8%, 55.7% and 54.2% within 8 h, respectively. This work offers a valuable insight into facilitating the application of supramolecular-derived carbon materials for extensive EF degradation.

Keywords: carbon; self assembly; assembly strategy; supramolecular self; assembly; electro fenton

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.