LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deposition Mechanism and Characterization of Plasma-Enhanced Atomic Layer-Deposited SnOx Films at Different Substrate Temperatures

The promising functional tin oxide (SnOx) has attracted tremendous attention due to its transparent and conductive properties. The stoichiometric composition of SnOx can be described as common n-type SnO2 and… Click to show full abstract

The promising functional tin oxide (SnOx) has attracted tremendous attention due to its transparent and conductive properties. The stoichiometric composition of SnOx can be described as common n-type SnO2 and p-type Sn3O4. In this study, the functional SnOx films were prepared successfully by plasma-enhanced atomic layer deposition (PEALD) at different substrate temperatures from 100 to 400 °C. The experimental results involving optical, structural, chemical, and electrical properties and morphologies are discussed. The SnO2 and oxygen-deficient Sn3O4 phases coexisting in PEALD SnOx films were found. The PEALD SnOx films are composed of intrinsic oxygen vacancies with O-Sn4+ bonds and then transformed into a crystalline SnO2 phase with increased substrate temperature, revealing a direct 3.5–4.0 eV band gap and 1.9–2.1 refractive index. Lower (<150 °C) and higher (>300 °C) substrate temperatures can cause precursor condensation and desorption, respectively, resulting in reduced film qualities. The proper composition ratio of O to Sn in PEALD SnOx films near an estimated 1.74 suggests the highest mobility of 12.89 cm2 V−1 s−1 at 300 °C.

Keywords: enhanced atomic; atomic layer; plasma enhanced; substrate temperatures; snox films

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.