LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical Absorption on Electron Quantum-Confined States of Perovskite Quantum Dots

Photo from wikipedia

In the framework of the dipole approximation, it is shown that in the perovskites quantum dots (QDs) FAPbBr3 and {en} FAPbBr3 interacting with low-intensity light, the oscillator strengths of transitions,… Click to show full abstract

In the framework of the dipole approximation, it is shown that in the perovskites quantum dots (QDs) FAPbBr3 and {en} FAPbBr3 interacting with low-intensity light, the oscillator strengths of transitions, as well as the dipole moments allowing transitions between one-particle electron quantum-confined states, attain values considerably (by two orders of magnitude) exceeding the typical values of the corresponding quantities in semiconductors. It has been established that the maximum values of the cross-section optical absorption of perovskite QDs are reached at the resonant frequencies of electron transitions. This makes it possible to use such nanosystems as of strong absorption nanomaterials in a wide range of infrared waves.

Keywords: absorption; quantum dots; quantum confined; optical absorption; confined states; electron quantum

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.