LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constructing a Double Alternant “Rigid-Flexible” Structure for Simultaneously Strengthening and Toughening the Interface of Carbon Fiber/Epoxy Composites

Photo by pavel_kalenik from unsplash

An optimized “rigid-flexible” structure with multistage gradient modulus was constructed on carbon fiber (CF) surface via chemical grafting using “flexible” polyethyleneimine (PEI) and “rigid” polydopamine (PDA) between “rigid” CF and… Click to show full abstract

An optimized “rigid-flexible” structure with multistage gradient modulus was constructed on carbon fiber (CF) surface via chemical grafting using “flexible” polyethyleneimine (PEI) and “rigid” polydopamine (PDA) between “rigid” CF and “flexible” epoxy (EP) to elaborate a double alternant “rigid-flexible” structure for simultaneously strengthening and toughening CF/EP composites. PDA and PEI polymers can greatly enhance the roughness and wettability of CF surfaces, further strengthening the mechanical interlocking and chemical interactions between CFs and epoxy. Besides, the “rigid-flexible” structure endows the interface with a gradient transition modulus, which could uniformly transfer internal stress and effectively avoid the stress concentration. Moreover, the double alternant “rigid-flexible” could buffer the external loading, induce more micro cracks and propagation paths and, thereby, consume more energy during the destruction of the composite. The interfacial shear strength, interlaminar shear strength, impact strength increased by 80.2%, 23.5% and 167.2%, and the fracture toughness improved by 227.2%, compared with those of the unmodified CF composite, respectively. This creative strategy and design afford a promising guidance for the preparation and production of advanced CF/EP structural materials with high strength and toughness.

Keywords: flexible structure; carbon fiber; alternant rigid; rigid flexible; double alternant

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.