LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanopore Detection Assisted DNA Information Processing

Photo by alterego_swiss from unsplash

The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information,… Click to show full abstract

The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.

Keywords: information; nanopore detection; information processing; dna information

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.