LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Binder-Free Zinc–Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors

Photo from wikipedia

The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less… Click to show full abstract

The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less explored for SC applications. Herein, we proposed a high-performance binder-free anode material composed of two-dimensional ZnFe2O4 nanoflakes supported on carbon cloth (ZFO-NF@CC). The electrochemical performance of ZFO-NF@CC as an anode material for supercapacitor application was examined in a KOH solution via a three-electrode configuration. The ZFO-NF@CC electrode demonstrated a specific capacitance of 509 F g−1 at 1.5 A g−1 and was retained 94.2% after 10,000 GCD cycles. The ZFO-NF@CC electrode showed exceptional charge storage properties by attaining high pseudocapacitive-type storage. Furthermore, an asymmetric SC device was fabricated using ZFO-NF@CC as an anode and activated carbon on CC (AC@CC) as a cathode with a KOH-based aqueous electrolyte (ZFO-NF@CC||AC@CC). The ZFO-NF@CC||AC@CC yielded a high specific capacitance of 122.2 F g−1 at a current density of 2 A g−1, a high energy density of 55.044 Wh kg−1 at a power density of 1801.44 W kg−1, with a remarkable retention rate of 96.5% even after 4000 cycles was attained. Thus, our results showed that the enhanced electrochemical performance of ZFO-NF@CC used as an anode in high-performance SC applications can open new research directions for replacing carbon-based anode materials.

Keywords: binder free; material; free zinc; zfo; high performance; performance

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.