LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Reduction and Preparation of Cu-Se Thermoelectric Thin Film in Solutions with PEG

Photo from wikipedia

Investigation of Cu(II) and Se(IV) electrochemical reduction processes in solutions with poly(ethylene glycol) (PEG) provides important theoretical guidance for the preparation of Cu-Se alloy films with stronger thermoelectric properties. The… Click to show full abstract

Investigation of Cu(II) and Se(IV) electrochemical reduction processes in solutions with poly(ethylene glycol) (PEG) provides important theoretical guidance for the preparation of Cu-Se alloy films with stronger thermoelectric properties. The results reveal that PEG adsorbing on the electrode surface does not affect the electrochemical reduction mechanism of Cu(II), Se(IV), and Cu(II)-Se(IV), but inhibits the electrochemical reduction rates. The surface morphology and composition change with a negative shift in the deposition potentials. The Cu-Se alloy film, which was prepared at 0.04 V, was α-Cu2Se as-deposited and P-type thermoelectric material after annealing. The highest thermoelectric properties were as follows: Seebeck coefficient (α) was +106 μV·K−1 and 1.89 times of Cu-Se alloy film electrodeposited in Cu(II)-Se(IV) binary solution without PEG; resistivity (ρ) was 2.12 × 10−3 Ω·cm, and the calculated power factor (PF) was 5.3 μW·cm−1K−2 and 4.07 times that without PEG.

Keywords: preparation thermoelectric; reduction preparation; film; electrochemical reduction; reduction

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.