LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergetic Effect of Hybrid Conductive Additives for High-Capacity and Excellent Cyclability in Si Anodes

Photo from wikipedia

Silicon is a promising anode material that can increase the theoretical capacity of lithium-ion batteries (LIBs). However, the volume expansion of silicon remains a challenge. In this study, we employed… Click to show full abstract

Silicon is a promising anode material that can increase the theoretical capacity of lithium-ion batteries (LIBs). However, the volume expansion of silicon remains a challenge. In this study, we employed a novel combination of conductive additives to effectively suppress the volume expansion of Si during charging/discharging cycles. Rather than carbon black (CB), which is commonly used in SiO anodes, we introduced single-walled carbon nanotubes (SWCNTs) as a conductive additive. Owing to their high aspect ratio, CNTs enable effective connection of SiO particles, leading to stable electrochemical operation to prevent volume expansion. In addition, we explored a combination of CB and SWCNTs, with results showing a synergetic effect compared to a single-component of SWCNTs, as small-sized CB particles can enhance the interface contact between the conductive additive and SiO particles, whereas SWCNTs have limited contact points. With this hybrid conductive additive, we achieved a stable operation of full-cell LIBs for more than 200 cycles, with a retention rate of 91.1%, whereas conventional CB showed a 74.0% specific capacity retention rate.

Keywords: hybrid conductive; capacity; volume expansion; synergetic effect; conductive additives

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.