LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature Control of Yellow Photoluminescence from SiO2-Coated ZnO Nanocrystals

Photo from wikipedia

In this study, we aimed to elucidate the effects of temperature on the photoluminescence from ZnO–SiO2 nanocomposite and to describe the preparation of SiO2-coated ZnO nanocrystals using a chemical precipitation… Click to show full abstract

In this study, we aimed to elucidate the effects of temperature on the photoluminescence from ZnO–SiO2 nanocomposite and to describe the preparation of SiO2-coated ZnO nanocrystals using a chemical precipitation method, as confirmed by Fourier transform infrared (FTIR) and powder X-ray diffraction analysis (XRD) techniques. Analyses using high-resolution transmission microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), and electrophoretic light scattering (ELS) techniques showed that the new nanocomposite has an average size of 70 nm and 90% silica. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and photoluminescence-excitation (PLE) measurements at different temperatures revealed two emission bands at 385 and 590 nm when the nanomaterials were excited at 325 nm. The UV and yellow emission bands were attributed to the radiative recombination and surface defects. The variable-temperature, time-resolved photoluminescence (VT-TRPL) measurements in the presence of SiO2 revealed the increase in the exciton lifetime values and the interplay of the thermally induced nonradiative recombination transfer of the excited-state population of the yellow emission via deep centers (DC). The results pave the way for more applications in photocatalysis and biomedical technology.

Keywords: photoluminescence; spectroscopy; sio2 coated; sio2; zno nanocrystals; coated zno

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.