LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmosphere-Assisted FLASH Sintering of Nanometric Potassium Sodium Niobate

Photo by ethanhaddox from unsplash

The request for extremely low-temperature and short-time sintering techniques has guided the development of alternative ceramic processing. Atmosphere-assisted FLASH sintering (AAFS) combines the direct use of electric power to packed… Click to show full abstract

The request for extremely low-temperature and short-time sintering techniques has guided the development of alternative ceramic processing. Atmosphere-assisted FLASH sintering (AAFS) combines the direct use of electric power to packed powders with the engineering of operating atmosphere to allow low-temperature conduction. The AAFS of nanometric Potassium Sodium Niobate, K0.5Na0.5NbO3, a lead-free piezoelectric, is of great interest to electronics technology to produce efficient, low-thermal-budget sensors, actuators and piezo harvesters, among others. Not previously studied, the role of different atmospheres for the decrease in FLASH temperature (TF) of KNN is presented in this work. Additionally, the effect of the humidity presence on the operating atmosphere and the role of the compact morphology undergoing FLASH are investigated. While the low partial pressure of oxygen (reducing atmospheres) allows the decrease of TF, limited densification is observed. It is shown that AAFS is responsible for a dramatic decrease in the operating temperature (T < 320 °C), while water is essential to allow appreciable densification. In addition, the particles/pores morphology on the green compact impacts the uniformity of AAFS densification.

Keywords: assisted flash; potassium sodium; sodium niobate; flash sintering; nanometric potassium; atmosphere assisted

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.