LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices

Photo by brambro from unsplash

In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to… Click to show full abstract

In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to see that new and fascinating properties are formed beyond single 2D materials; thus, 2D heterostructures-based nanodevices, especially for potential optoelectronic applications, were successfully constructed in the past few decades. With the dramatically increased demand for well-controlled heterostructures for nanodevices with desired performance in recent years, various interfacial modulation methods have been carried out to regulate the interfacial coupling of such heterostructures. Here, the research progress in the study of interfacial coupling of vdWHs (investigated by Photoluminescence, Raman, and Pump–probe spectroscopies as well as other techniques), the modulation of interfacial coupling by applying various external fields (including electrical, optical, mechanical fields), as well as the related applications for future electrics and optoelectronics, have been briefly reviewed. By summarizing the recent progress, discussing the recent advances, and looking forward to future trends and existing challenges, this review is aimed at providing an overall picture of the importance of interfacial modulation in vdWHs for possible strategies to optimize the device’s performance.

Keywords: van der; heterostructures nanodevices; interfacial coupling; modulation; der waals; waals heterostructures

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.