LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Step Synergistic Treatment Approach for High Performance Amorphous InGaZnO Thin-Film Transistors Fabricated at Room Temperature

Photo by kirrender from unsplash

Amorphous InGaZnO (a-InGaZnO) is currently the most prominent oxide semiconductor complement to low-temperature polysilicon for thin-film transistor (TFT) applications in next-generation displays. However, balancing the transmission performance and low-temperature deposition… Click to show full abstract

Amorphous InGaZnO (a-InGaZnO) is currently the most prominent oxide semiconductor complement to low-temperature polysilicon for thin-film transistor (TFT) applications in next-generation displays. However, balancing the transmission performance and low-temperature deposition is the primary obstacle in the application of a-InGaZnO TFTs in the field of ultra-high resolution optoelectronic display. Here, we report that a-InGaZnO:O TFT prepared at room temperature has high transport performance, manipulating oxygen vacancy (VO) defects through an oxygen-doped a-InGaZnO framework. The main electrical properties of a-InGaZnO:O TFTs included high field-effect mobility (µFE) of 28 cm2/V s, a threshold voltage (Vth) of 0.9 V, a subthreshold swing (SS) of 0.9 V/dec, and a current switching ratio (Ion/Ioff) of 107; significant improvements over a-InGaZnO TFTs without oxygen plasma. A possible reason for this is that appropriate oxygen plasma treatment and room temperature preparation technology jointly play a role in improving the electrical performance of a-InGaZnO TFTs, which could not only increase carrier concentration, but also reduce the channel-layer surface defects and interface trap density of a-InGaZnO TFTs. These provides a powerful way to synergistically boost the transport performance of oxide TFTs fabricated at room temperature.

Keywords: amorphous ingazno; ingazno tfts; temperature; room temperature; performance

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.