LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphitic Carbon Nitride as Visible-Light Photocatalyst Boosting Ozonation in Wastewater Treatment

Photo from wikipedia

Light can boost ozone efficiency in advanced oxidation processes (AOPs), either by direct ozone photolysis with UV light or by using a photocatalyst that can be excited with UV-Vis or… Click to show full abstract

Light can boost ozone efficiency in advanced oxidation processes (AOPs), either by direct ozone photolysis with UV light or by using a photocatalyst that can be excited with UV-Vis or solar light. The present review summarizes literature data on the combination of ozone and the g-C3N4 photocatalyst for the degradation of probe molecules in water, including oxalic, p-hydroxybenzoic and oxamic acids as well as ciprofloxacin and parabens. g-C3N4 is a metal-free visible-light photocatalyst based on abundant elements that establishes a synergistic effect with ozone, the efficiency of the combination of the photocatalysis and ozonation being higher than the sum of the two treatments independently. Available data indicate that this synergy derives from the higher efficiency in the generation of hydroxyl radicals due to the efficient electron quenching by O3 of photogenerated conduction band electrons in the g-C3N4 photocatalyst. Given the wide use of ozonizers in water treatment, it is proposed that their implementation with g-C3N4 photocatalysis could also boost ozone efficiency in the AOPs of real waste waters.

Keywords: light photocatalyst; photocatalyst; ozone; visible light; ozonation; efficiency

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.