LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Presence of Induced Weak Ferromagnetism in Fe-Substituted YFexCr1−xO3 Crystalline Compounds

Photo by kalineri from unsplash

Fe-substituted YFexCr1−xO3 crystalline compounds show promising magnetic and multiferroic properties. Here we report the synthesis and characterization of several compositions from this series. Using the autocombustion route, various compositions (x… Click to show full abstract

Fe-substituted YFexCr1−xO3 crystalline compounds show promising magnetic and multiferroic properties. Here we report the synthesis and characterization of several compositions from this series. Using the autocombustion route, various compositions (x = 0.25, 0.50, 0.6, 0.75, 0.9, and 1) were synthesized as high-quality crystalline powders. In order to obtain microscopic and atomic information about their structure and magnetism, characterization was performed using room temperature X-ray diffraction and energy dispersion analysis as well as temperature-dependent neutron diffraction, magnetometry, and 57Fe Mössbauer spectrometry. Rietveld analysis of the diffraction data revealed a crystallite size of 84 (8) nm for YFeO3, while energy dispersion analysis indicated compositions close to the nominal compositions. The magnetic results suggested an enhancement of the weak ferromagnetism for the YFeO3 phase due to two contributions. First, a high magnetocrystalline anisotropy was associated with the crystalline character that favored a unique high canting angle of the antiferromagnetic phase (13°), as indicated by the neutron diffraction analysis. This was also evidenced by the high magnetic hysteresis curves up to 90 kOe by a remarkable high critical coercivity value of 46.7 kOe at room temperature. Second, the Dzyaloshinskii–Moriya interactions between homogenous and heterogeneous magnetic pairs resulted from the inhomogeneous distribution of Fe3+ and Cr3+ ions, as indicated by 57Fe Mössbauer studies. Together, these results point to new methods of controlling the magnetic properties of these materials.

Keywords: xo3 crystalline; crystalline compounds; crystalline; yfexcr1 xo3; weak ferromagnetism; substituted yfexcr1

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.